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ABSTRACT

New York City has pledged to reduce its greenhouse gas
emissions by 80 percent by the year 2050, and 60 percent
of these reductions will need to come from the buildings
sector. Unfortunately, the wide and rapid adoption of en-
ergy conservation measures is hindered by the lack of granu-
lar, comprehensive, and easily accessible energy usage data
for buildings. To increase the volume of available building
energy data, New York City’s Local Law 84 requires large
buildings to disclose their energy consumption.

This paper details two ongoing projects to increase both the
availability and comprehensiveness of building energy data.
The first is a web-based visualization tool which allows users
to understand patterns of energy consumption in individual
buildings and across the city. The second project attempts
to generalize from disclosure data by creating a predictive
model of annual energy consumption for each building in the
city. Building-level predictions are then validated against
aggregate zip code-level data from local utilities.

1. INTRODUCTION

The effects of anthropogenic climate change are well docu-
mented, leading to increased global average temperatures,
decreased snow and ice, rising sea levels, and more extreme
weather conditions. These events threaten the safety and
stability of societies around the world, and place an even
greater burden on already disadvantaged communities. In
order to mitigate the worst predicted changes, the Intergov-
ernmental Panel on Climate Change (IPCC) recommends
that global average temperature increase be limited to 2°C
above pre-industrial levels. However, achieving this goal will
require a concerted global effort to reduce greenhouse gas
(GHG) emissions by 41-72 percent, with even higher reduc-
tions necessary in the most developed nations [9].

To achieve these goals a number of organizations, from the
European Union (8] to individual cities |1 |5], have pledged to
reduce their production of greenhouse gases by 80 percent by
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the year 2050: a process popularly referred to as 80 by 50. As
part of this process, buildings have been identified as a key
area where cost-effective reductions can be made |20|. In the
United States, residential and commercial buildings together
accounted for 34 percent of all GHG emissions nationwide in
2013 |7]. However, the energy used by buildings is an even
more significant source of greenhouse gas emissions in dense
urban areas such as New York City, where 70 percent of all
emissions are due to the heating fuel, natural gas, electricity,
and biofuel used in buildings [4]. The city has calculated
that in order for New York to achieve its 80 by 50 plan,
more than 60 percent of its GHG emission reductions must
come from improvements in building efficiency [3].

Despite the urgency of increasing the energy efficiency of
buildings, progress has been slow, due largely to social fac-
tors at the intersection of governance, engineering, and mar-
ket structures [19]. Many of these impediments to the wide
adoption of energy efficiency improvements derive from per-
sistent information asymmetries in real-estate markets, in-
cluding asymmetries between building owners, tenants, ser-
vice providers, lenders, and public agencies [14]. The pres-
ence of large quantities of accurate, available and granular
data about building energy consumption could help restore
the information balance between these various actors.

1.1 Energy Disclosure Laws

One way to even out the flow of information is through infor-
mation disclosure laws, which have been shown to effectively
increase transparency in areas as diverse as finance and nu-
tritional labeling [21]. As of March 2015, ten U.S. cities
and one county had adopted energy disclosure laws requir-
ing some buildings to release their energy consumption data
to the local government [18]. In 2009, New York City be-
came the first of these cities with the passage of Local Law
84 (LL84) as part of the Greener Greater Buildings Plan.
LL84 requires all buildings over 50,000 square feet to annu-
ally disclose their energy and water consumption along with
a number of usage and occupancy characteristics |2|. This
data set is the largest of its kind, with approximately 13,000
properties reporting their energy use during the year 2013.

By requiring and enforcing regular reporting of energy use,
disclosure or benchmarking laws allow the energy consump-
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tion of a building to be benchmarked against its own perfor-
mance to track changes over time. These data also enable
a building to be benchmarked against other peer buildings
that share similar land use, construction, and location char-
acteristics. For example, repeated observations of the en-
ergy consumption of a large number of buildings over time
could allow for robust longitudinal studies to determine the
effects of energy retrofit measures. A large sample size in
these studies would be required to get accurate estimates
and to determine how conservation measures interact with
other variables such as property type and building physical
characteristics. More accurate estimates of retrofit effects
would lower uncertainty around retrofit financing, and al-
low more buildings to take advantage of the cost-reductions
associated with increased energy efficiency.

New York’s Local Law 84 has the capability to enable more
informed decisions in the energy efficiency market, but LL84
and energy disclosure laws in general have several major dis-
advantages. First, information disclosure laws are most ef-
fective when the data they generate is embedded in the daily
decision-making process of relevant actors [21]. However, the
energy disclosure data from LL84 are currently released to
the public in comma-separated value (CSV) format, either
through the NYC Open Data portal, or through an obscure
web page maintained by the Mayor’s Office. CSV format
may be ideal for analysts but it can provide a barrier to
access for many building stakeholders. Second, while New
York’s LL84 data set is the largest of its kind, it contains
data for only 1.5 percent of properties in NYC (as calcu-
lated by unique tax lots). Thus there are a huge number
of properties for which no energy data are available. This
leads to many outlying areas of the city having almost no
representation in the data set. Lastly, because the data are
self-reported by building managers, there is the possibility
for errors due to incorrectly typed values or misunderstand-
ing of reporting rules. As an example, errors have been
identified when two buildings on separate parcels share the
same meter, or when different buildings share a parcel [15].

This paper describes works in progress to address all three
of these problems. The poor availability of building en-
ergy data is being addressed through the development of
a public-facing web-based visualization tool. The tool will
allow building stakeholders and the general public to explore
energy use across the city, as well as to gain insight into the
consumption of specific buildings. The lack of energy con-
sumption data for the entire city is addressed through the
construction of a predictive model of energy consumption.
The model is fit to benchmarking data, and then validated
against aggregate energy data from utilities. Finally, the is-
sue of data quality is addressed through a general statistical
data-cleaning methodology that applies broadly to building
energy data.

2. DATA AND CLEANING

There were three primary data sources utilized for this work.
LL84 and PLUTO are used in the visualization and energy
modeling, while the zip code energy data is used only for
validation of the predictive model.

2.1 Local Law 84

These are the energy benchmarking data for New York City.
The public version of the data set available on the NYC
Open Data portal was used for the visualization tool. These
data contain annual energy use, water use, and GHG emis-
sions for all reporting properties as well as the primary prop-
erty type (Office, Multifamily Housing, etc.), and the Bor-
ough, Block, and Lot (BBL) number used to match the re-
porting properties with city tax lot data. The prediction
task used a confidential version of the data provided by the
NYC Mayor’s Office of Sustainability. This data set con-
tains additional fields for annual consumption of each fuel
type such as electricity, natural gas, steam, and various fuel
oils.

2.1.1 Data-Cleaning

The first cleaning steps were to remove redundant proper-
ties. This took the form of removing entries with more than
one BBL number specified, as well as duplicate entries. The
second cleaning step was to remove entries with no reported
energy use. This was done by removing entries with zero or
null values for weather-normalized source energy use inten-

sityf!] (EUT).

Of the reported fields, it was decided that EUI was an opti-
mal field to use for identifying entries with other incorrectly
entered information. This field is calculated as a composite
of all individual fuel types and the reported gross floor area.
As such, if any of the sub-fields is drastically misreporte(fl it
should produce extreme EUI values. The EUI values for the
whole data set were observed to roughly follow a logarith-
mic normal distribution. EUI values were then transformed
with a natural logarithm producing a normal distribution
of the data, and extreme values were removed if they were
greater than +2 standard deviations from the mean. This
corresponds to removing approximately the top and bottom
5 percent of entriesﬂ Figure [1| details this process.

2.2 PLUTO

The NYC Primary Land Use Tax Lot Output (PLUTO) is
an extensive public data set provided by the NYC Depart-
ment of City Planning. It contains location, land-use, and
physical characteristics for all the buildings in NYC, and can
be used to identify properties based on address, BBL, and
zip codes. In this work, the data set is used to provide a
standardized set of building characteristics. These charac-
teristics are matched with LL84 for training the predictive
model, and also used to extrapolate energy use across the
city. The corresponding MapPLUTO data contain location
and shape information that is used for visualization. The
data are updated regularly, and version 14v2 was used in
this analysis.

2.2.1 Data-Cleaning

PLUTO contains fields representing how much floor area in
a building is devoted to residential, office, retail, and other

'Defined as energy consumed per square foot (kBTU/ft?),
and adjusted for annual weather trends.

2E.g. through accidental addition or omission of zeros.
3Upon publication the data used for visualization still used
an older methodology to remove the top and bottom 1% of
entries.
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Figure 1: Top: Histogram of log EUI with dashed
lines at 2 standard deviations. Bottom: Histogram
of EUI after removing outliers.

uses. In approximately 8 percent of cases, the sum of these
subdivisions did not equal the field denoting total building
area. In order to avoid ambiguities, a new total floor area
field was calculated as the sum of all floor area subtypes.
This derived field was used in all subsequent calculations
requiring a total built floor area.

2.3 Zip Code Energy Consumption

These data contain aggregate energy consumption for all
of New York City at the zip code level, broken down by
fuel type into electrical, natural gas, steam, and fuel oil.
The data were obtained from the local utilities Consolidated
Edison, National Grid and the Long Island Power Authority,
and were provided for research by the NYC Mayor’s Office
of Sustainability. These data will be used as a ground truth
when extrapolating energy consumption from large buildings
to smaller buildings that do not report their energy usage
under LL84.

2.3.1 Data-Cleaning

Due to unresolved definitions and data quality issues, only
electricity and natural gas have been used in the current
analysis. With these, the only cleaning performed was to
convert all values to kBTU to allow comparison.

3. BUILDING ENERGY VISUALIZATION

In order to obtain the full value from energy disclosure laws,
it is necessary for the data to be easily accessible and fully

embedded into the decision-making processes of stakehold-
ers. This paper describes work to develop an interactive
website that enables users to easily navigate and query the
data from LL84.

Much of the scholarly work on visualizing building energy
data is focused on data for individual buildings. This in-
cludes tools designed for building managers and designers to
visualize load profiles and better understand energy usage in
real time |16} [17]. Other work discusses methods designed
for end use consumers to promote energy-consciousness and
reduce consumption by visualizing realtime energy use |11].
Software tools have also been proposed to monitor and man-
age energy use on a city-wide level by visualizing geolocated
energy data [13], but once again this work was designed for
real-time energy use.

The most relevant example of a comparable project is a web-
based visualization created for the city of Philadelphia to
display their 2014 energy benchmarking data [6]. This site
informed the design of this groups work, particularly with re-
gards to the visual encoding chosen for the interactive map.
However, the Philadelphia site has a more passive nature
overall that guides users through particular facts and fig-
ures. The design of the NYC site takes a more interactive
approach with higher levels of user control.

3.1 Interaction Design

Figure [2] captures much of the core functionality of the visu-
alization tool. At top left, users are able to switch between
different metrics of interest, currently EUI, water use inten-
sity (WUI), GHG emissions, and gross floor area. This is
the highest level of selection and changes update all other
portions of the visualization. Just below this is a search
bar that allows users to query for particular buildings and
addresses. This enables building stakeholders to seek out in-
formation about the energy consumption of their building,
and to see how it compares to peer buildings.

Further down is a list of primary property types next to
the number of properties of that type represented in the
data. This is accompanied by a whisker plot that displays
means and standard deviations for different property types,
thereby highlighting both the difference in consumption and
variance between different uses. This portion of the tool also
allows users to select and focus on a single property type.
This updates the map do show the spatial distribution of
buildings of that type. Figure[2]shows the results of selecting
only office buildings; the heavy concentration of properties
in midtown Manhattan is clearly visible, as is the darker
color (higher EUI) of midtown buildings.

Selecting a property type also displays a scatter plot with
points representing buildings of that type displayed along
two dimensions. This display allows for easy identification
and selection of extreme outliers, thus allowing the user to
investigate further. For now the dimensions are fixed with
GHG emissions on the x-axis and the currently selected met-
ric on the y-axis. Ultimately the user will be able to specify
which relationship to display by selecting each of the dimen-
sions.

The interactive map serves several purposes. Most obviously
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Figure 2: An overview of the building energy visualization site. The left hand side displays summary statistics
and graphics for different property types. The right hand side displays an interactive map of the buildings
in LL84 along with an info-box containing details about a specific property of interest.

it displays the spatial distribution of buildings which report
under Local Law 84 and also displays the spatial distribution
of energy use in the city. It also serves a s a navigation and
query tool by allowing users to pan and zoom to locations of
their choosing in order to examine the details of particular
neighborhoods. Users can then select buildings which they
recognize or which stand out as particularly high or low
energy users.

The selection of an individual property on the map or scat-
ter plot, or a successful search with the search bar will create
the small information box visible in the upper right corner of
Figure[2l This box displays a number of summary statistics
about the selected property, and also displays a histogram of
the metric of interest. This histogram is limited to properties
of the same type as the selection, thus allowing more accu-
rate comparisons to be made. This comparison is further
aided by the appearance of an orange line on the histogram,
marking the position of the selected property relative to the
overall distribution within that property type. A similar
line appears on the whisker plot, marking the location of
that building relative to the means for different property

types.

3.2 Implementation

The visualization tool is implemented using standard web
technologies: HTML, CSS, and Javascript. The charts and
graphs are created using the Data-Driven Documents (D3)
library for Javascript, which allows easy binding of data

points to SVG objects. The interactive map is implemented
using the CartoDB.js library. Using CartoDB allows easy
application of powerful mapping software, and also provides
a spatially-enabled back-end for storing and easy querying
of property polygons and energy data.

4. PREDICTING URBAN ENERGY USE

The second goal of this work is to identify how well energy
benchmarking data can be extrapolated to buildings which
aren’t required to report their energy use. This is done by
creating a predictive model of energy consumption based on
the LL84 data and then using this model to predict energy
use for every property in the city.

There are a variety of computational approaches to pre-
dicting building energy consumption. At the highest level
these can be divided into engineering methods and statis-
tical methods [23]. Engineering methods operate by form-
ing elaborate physical models of building thermal properties
and sub-component operation. They are useful in the build-
ing planning stage, but are often impractical for estimating
the consumption of buildings already in operation because
they require many detailed parameters that are often dif-
ficult or impossible to obtain. Statistical methods, on the
other hand, operate by correlating energy consumption with
influencing variables. This is done by collecting historical
data for both the energy use and predictor variables and
then using some sort of regression model to estimate the
relationship between predictors and consumption. These



data-driven approaches are also known as inverse models
and they can provide reliable estimation while being sub-
stantially simpler and less time-consuming than engineering

methods .

There are several previous studies which directly relate to
the approach used in this research project. Howard et al.
utilized zip code level energy consumption data from
2009 comparable to the zip code level energy data used in
this project from 2013. Howard et al. utilize a robust linear
regression model with building area devoted to various land
uses as input and zip code level consumption data as out-
put. This results in estimated EUI values for each land-use
type across the city. These static EUI coefficients are use-
ful, but they ignore a great deal of building-level variation
that results from factors like building physical characteris-
tics. A second related study utilized a robust linear regres-
sion model fit to LL84 benchmarking data to show that a
number of building characteristics including occupancy and
physical construction were significantly correlated with en-

ergy use .
4.1 Methodology

Work so far has been limited to predicting only electricity
and natural gas consumption for New York City. Future
work will extend this to consider total consumption

4.1.1 Electricity Prediction

The electricity use intensity of each property in LL84 was
calculated as the annual total electricity consumption in
kBTU divided by the total building floor area in square feet.
Rows with zero building area or which lacked an electricity
consumption were dropped from the data set, resulting in
8492 properties remaining. The electricity use intensity field
was transformed using the natural logarithm to produce a
more nearly gaussian distribution of values, and this was
then used for prediction.

Although the data were previously filtered to remove prop-
erties in the extremes of total EUI, there was no specific
filtering to remove outliers in electricity use. To compen-
sate for these outliers, a robust linear regression model was
used to fit the 8492 training examples. The specifics of the
model are visible in Table 3 of the Appendix.

Robust regression has previously been shown in the litera-
ture to be a useful technique for estimating energy use as
well as gaining insight into the factors relevant to increased
consumption . The linearity assumptions inherent in
linear regression tend to create a less “flexible” model with
higher bias and lower variance . In the case of this study,
low variance is a benefit due to limitations of the training
data. Specifically, the training data are drawn exclusively
from large properties in NYC while a majority of properties
in the city (54 percent) are classified as 1 or 2 family homes.
Given the lack of representation of small properties in the
training data, it is desirable to capture the most important
and generalizable features of the data set without capturing
those features which apply only to large properties. A rigid
and inflexible model like linear regression is well-suited to
this task. Table [1| in the Appendix shows the model used
to predict electricity use intensity with a brief description of
building characteristics used.
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Figure 3: The bimodal distribution for NGUI was
effectively split into two unimodal distributions by
separating out buildings which use primarily natural
gas as their non-electricity energy source.

After fitting the model to the LL84 training data, the model
is then used to predict an electricity use intensity for every
property present in the PLUTO data set. The use intensity
is then multiplied by building floor area and aggregated at
the level of the zip code for validation against the ground-
truth utility data as discussed in the results.

4.1.2 Natural Gas Prediction

The prediction of natural gas use intensity (NGUI) proceeds
in much the same way as that for electricity, with one major
difference. The NGUI was first calculated by dividing the
total annual natural gas use in kBTU by the floor area in
square feet. Rows with zero building area or which lacked
natural gas consumption were dropped from the data set,
resulting in 6967 properties remaining.

The use intensity was again log-transformed, at which time
a clearly bimodal distribution of NGUI became visible (Fig-
ure |3)). It is hypothesized that this distribution is actu-
ally a compound of two different distributions arising from
separate processes. The first process being buildings which
primarily use an alternate fuel, which only a minority of nat-
ural gas use. This could correspond to buildings which use
steam or fuel oil for heating, and natural gas only for sec-
ondary purposes like cooking. The second process would be
buildings which use natural gas as their primary heating fuel
as well as for secondary purposes. This hypothesis was sup-
ported after observing that separation of the buildings into
two groups (majority natural gas and minority natural gas)
produced two distinctly separate unimodal distributions for
NGUI. Furthermore, this was the only distinction observed
to nicely separate the distributions. Splitting the properties
based on property type or on year built failed to produce uni-
modal distributions for the subgroups. This splitting process
is visible in Figure
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Figure 4: The ROC curve for the logit model to
predict natural gas class. The area under the curve
(AUCQC) is 0.818.

After determining that NGUI varies greatly based on which
group a building falls into, this project set out to predict
which buildings in NYC would use natural gas as their pri-
mary fuel. This was done by first creating a binary variable
in Local Law 84 corresponding to natural gas class, equal
to 0 if a building uses majority natural gas, and 1 for ma-
jority other fuel. The prediction was then done by training
a logistic regression binary classifier on the LL84 data, and
then using it to predict the gas class for every building in
PLUTO. Figure [ shows the Reciever Operating Character-
istic (ROC) curve for the logit model evaluated on the LL84
data. This curve details how the model performs with re-
gards to sensitivity (true positive rate) and specificity (true
negative rate) as the cutoff threshold is varied. A curve near
the diagonal performs roughly as good as random, while a
curve tracing significantly above the diagonal performs much
better than random. The curve was calculated using leave-
one-out cross validation, whereby for each data point p, a
model is fit to all of the data except for p, and then used to
predict the class of point p.

The area under the ROC curve (AUC) is often used as a
summary statistic for the performance of binary classifiers.
The logit model used here has an AUC of 0.818 on the LL84
data. This is equal to the probability that a classifier will
rank a randomly chosen positive instance higher than a ran-
domly chosen negative instance. Among the training data,
a threshold of 0.3 appears to perform the best overall, but
when generalizing to the entire city, a much higher threshold
of 0.7 performed the best. This corresponds to only classi-
fying buildings as majority other fuel if the classifier is very
certain. Figure [ shows the ROC curve with AUC.

The logit prediction of which class a building belongs to was
then added as a feature to the PLUTO data set. This fea-
ture then became a predictor into a robust linear regression
model as before. All of the previous arguments in favor of
a linear regression model also apply here. It is worth noting
that the optimal model in this case was simpler than in the
electricity case, likely owing to the innate difficulty in pre-

dicting natural gas use, discussed later. The details for both
the logistic regression classifier and the linear regression pre-
dictor are not included in this paper, but the regressors used
are similar to those in Table[T]in the Appendix.

4.2 Prediction Results

After predicting the electricity and natural gas use intensity
for every property in NYC, the results were multiplied by
building total square footage and then aggregated at the zip
code level. After aggregation, the predicted consumption
was compared to the measured consumption obtained from
the utilities. The results are visible in Figure |b| where mea-
sured consumption for each zip code is plotted on the x-axis,
and predicted consumption is plotted on the y-axis. A per-
fect prediction would lie perfectly on the line y = x, while
the dotted lines correspond +20% of the correct value. The
median absolute percent error (median APE) for electricity
was 10.75 meaning that half of the predicted zip codes were
within 10.75% of correct, and the R? was 0.93, meaning that
93% of the variance between zip codes was explained by the
model. Likewise, the median APE of natural gas was 30
meaning that half of the zip codes were within 30% of cor-
rect, and the R? was 0.65, meaning that 65% of the variance
between zip codes was explained by the model.

The large discrepancy between electricity and natural gas
owes to the inherent difficulty in predicting natural gas use
compared to electricity. Virtually every building can be ex-
pected to use electricity for lighting, computers, microwaves,
and other purposes. On the other hand, not every building
can be expected to use substantial quantities of natural gas.
First, there is inherent variability in whether a building even
uses natural gas. For example, a building may rely entirely
on fuel oil for heating, and then use electricity for cooking.
In this model, all buildings were assumed to use some level
of natural gas, even if the amounts were very low. Second,
there is uncertainty in the natural gas classification of build-
ings. Since only the most certain predictions were classified
into the majority natural gas group, it is possible that a
substantial percentage of the properties in NYC were in-
correctly classified. Lastly, there is uncertainty as to what
portion of a building’s fuel use comes from natural gas. In
the model used here, any building with less than 50% nat-
ural gas as their fuel would be classified as the zero group.
This leaves a large variance that is likely unexplained by the
relatively simple linear model used here.

S.  CONCLUSIONS AND IMPACT

Energy disclosure laws have been proposed as an effective
way to reduce information asymmetries among actors in the
building sector. By doing so it is hoped that they will cat-
alyze the transformation of the current building stock and
enable rapid investments in energy efficiency. The work in
this paper has discussed two attempts at overcoming the
limitations of these disclosure laws. First, the design of an
interactive visualization tool was discussed. This tool can
unlock benchmarking data from the static form of CSV files
to engage building stakeholders and increase data accessi-
bility. Second, a method was discussed to generalize from
benchmarking data to gain further insight into the spatial
distribution of energy use in New York City. This method
has the potential to inform the targeting of localized en-
ergy conservation measures. A complete energy consump-
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tion map can also serve as the basis of a more general energy
planning tool.

Future work will extend both of the projects and possibly
combine them to provide interactive examination of actual
and estimated energy consumption across NYC.
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APPENDIX
A. REGRESSION RESULTS

Table |1f shows the robust linear regression model used to
predict electricity use intensity. Both of the models related
to natural gas use similar regressors, although the models
are less complex.

The first variables in the model after the intercept are binary
variables indicating the time period in which the building
was built. The variables PercentRes, PercentOffice, etc. are
proportions of the floor space in the building devoted to the
specified use. These are then interacted with specific land
use variables indicating how the building is zoned by the
Department of City Planning. This allows floor space in each
land use to have a unique coefficient. The number of floors
and floor-area ratio come directly from PLUTO fields, while
Attached Lot and Inside Lot are derived binary variables.
Manhattan is a binary variable indicating whether a building
is located in Manhattan. Finally, SVR is the surface area-
to-volume ratio of the building derived from fields indicating
lot width and depth, and assuming a rectangular building.



Table 1: Model Specification for Electricity Use In-

tensity
Regressor Coefficient  Std. error p-Value
Intercept 3.4865 0.079 0.000
Built 1931 to 1950 -0.0624 0.014 0.000
Built 1951 to 1970 0.0708 0.013 0.000
Built 1971 to 1990 0.2797 0.018 0.000
Built after 1991 0.3637 0.016 0.000
PercentRes:MultiFamWalkUp -0.8945 0.081 0.000
PercentRes:MultiFamElev -0.8438 0.079 0.000
PercentRes:MixedResOffice -0.8039 0.080 0.000
PercentRes:MFOther -1.3325 0.126 0.000
PercentOffice:MultiFamElev 0.4534 0.307 0.140
PercentOffice:MixedResOff 0.6402 0.166 0.000
PercentOffice:Office 0.1399 0.080 0.080
PercentOffice:Industrial 0.0131 0.133 0.922
PercentOffice:Public 0.4182 0.102 0.000
PercentOffice:OfficeOther 3.1747 1.398 0.023
PercentRetail:MultiFamElev 1.6883 0.208 0.000
PercentRetail:MixedResOff 1.2806 0.115 0.000
PercentRetail:Office 0.5756 0.086 0.000
PercentRetail:Industrial 0.9422 0.269 0.000
PercentRetail:RetailOther 0.6761 0.200 0.001
PercentGarage -0.9947 0.104 0.000
PercentStrge -0.7166 0.086 0.000
PercentFactry -0.7973 0.090 0.000
PercentOther -0.1324 0.081 0.100
Number of Floors 0.0055 0.001 0.000
Floor-Area Ratio -5.122e-05 0.000 0.799
standardize(SVR) -0.0227 0.005 0.000
Attached Lot -0.0177 0.015 0.229
Inside Lot -0.0220 0.010 0.021

Manhattan 0.1875 0.013 0.000
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